Newton maps of complex exponential functions and parabolic surgery
نویسندگان
چکیده
منابع مشابه
study of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Virtual and Immediate Basins for Newton Maps of Entire Functions
The Newton map Nf of an entire function f turns the roots of f into attracting fixed points. Let U be the immediate attracting basin for such a fixed point of Nf . We study the behavior of Nf in a component V of C \ U . If V can be surrounded by an invariant curve within U and satisfies the condition that for all z ∈ Ĉ, N f ({z})∩V is a finite set, we show that V contains another immediate basi...
متن کاملA Combinatorial Classification of Postsingularly Finite Complex Exponential Maps
We give a combinatorial classification of postsingularly finite exponential maps in terms of external addresses starting with the entry 0. This is an extension of the classification results for critically preperiodic polynomials [BFH] to exponential maps. Our proof relies on the topological characterization of postsingularly finite exponential maps given recently in [HSS]. Our results illustrat...
متن کاملCombinatorial Classification of Postsingularly Preperiodic Complex Exponential Maps
We give a combinatorial classification of postsingularly finite exponential maps in terms of external addresses starting with the entry 0. This is an extension of the classification results for critically preperiodic polynomials [BFH] to exponential maps. Our proof relies on the topological characterization of postsingularly finite exponential maps given recently in [HSS]. Our results illustrat...
متن کاملA Combinatorial Classification of Postsingularly Preperiodic Complex Exponential Maps
We give a combinatorial classification of postsingularly finite exponential maps in terms of external addresses starting with the entry 0. This is an extension of the classification results for critically preperiodic polynomials [BFH] to exponential maps. Our proof relies on the topological characterization of postsingularly finite exponential maps given recently in [HSS]. Our results illustrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2018
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm345-9-2017